An Energy Efficient Turning Process for Hardened Material with Multi-criteria Optimization
نویسندگان
چکیده
This paper presents a systematic procedure for the optimization of machining parameters such as cutting speed, feed rate, nose radius, edge radius, and rake angle to reduce specific material removal energy and improve energy efficiency in the hard turning of AISI 4140 steel. A simulation approach was applied in conjunction with the design of experiment (DOE), mathematical approximation with a meta-model to develop specific energy as well as an energy efficiency model in terms of cutting parameters. A hybrid approach that combines the Multi-Objective Particle Swarm Optimization (MOPSO) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) using entropy weights was adopted to determine the best solution from the Pareto set. The results showed that energy efficiency could be improved by 11%, whereas specific energy decreased by approximately 15% compared to a non-optimal case. Therefore, this study is expected as a contribution to making the turning process of hardened materials greener and more efficient.
منابع مشابه
Using Gray Relational Analysis and Taguchi Technique in Solving Multi-objective Problems for Turning Operation of Austenitic Stainless Steel
In this study, the application of gray relational analysis (GRA) and Taguchi method in multi-criteria process parameters selection of turning operation has been investigated. The process responses under study are material removal rate (MRR) and surface roughness (SR); in turn, the input parameters include cutting speed, feed rate, depth of cut and nose radius of the cutting tool. The proposed a...
متن کاملSurface Roughness, Machining Force and FlankWear in Turning of Hardened AISI 4340 Steel with Coated Carbide Insert: Cutting Parameters Effects
The current experimental study is to investigate the effects of process parameters (cutting speed, feed rate and depth of cut) on performance characteristics (surface roughness, machining force and flank wear) in hard turning of AISI 4340 steel with multilayer CVD (TiN/TiCN/Al2O3) coated carbide insert. Combined effects of cutting parameter (v, f, d) on performance outputs (Ra, Fm and VB) ar...
متن کاملIntegration of grey-based Taguchi technique in optimization of parameters process during the turning operation of 16MnCr5 steel
CNC turning is widely used as a manufacturing process through which unwanted material is removed to get the high degree of surface rough. In this research article, Taguchi technique was coupled with grey relation analysis (GRA) to optimize the turning parameters for simultaneous improvement of productivity, average surface roughness (Ra), and root mean square roughness (Rq).Taguchi technique L2...
متن کاملAn Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm
In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...
متن کاملEXPERIMENTAL POLYMERIC NANOCOMPOSITE MATERIAL SELECTION FOR AUTOMOTIVE BUMPER BEAM USING MULTI-CRITERIA DECISION MAKING METHODS
Material selection is a main purpose in design process and plays an important role in desired performance of the products for diverse engineering applications. In order to solve material selection problem, multi criteria decision making (MCDM) methods can be used as an applicable tool. Bumper beam is one of the most important components of bumper system in absorbing energy. Therefore, selecting...
متن کامل